High-temperature thermal expansion of ScAlMgO₄ for substrate application of GaN and ZnO epitaxial growth

Rayko Simura^{1*}, Kazumasa Sugiyama¹, Akihiko Nakatsuka², and Tsuguo Fukuda³

High-temperature powder X-ray diffraction measurements for ScAlMgO₄ grown by Czochralski method were carried out from 303 to 1473 K. The obtained temperature-dependent unit cell parameters indicates that the axial thermal expansion coefficients for the a-axis estimated from the unit cell parameters were comparable to those of GaN and ZnO suggesting that ScAlMgO4 is one of the promising substrates for *c*-plane epitaxial growth of GaN and ZnO. High temperature X-ray single crystal structural analysis of ScAlMgO₄ demonstrated the mechanism of the nonlinear variation of the obtained cell parameters as a function of temperature.

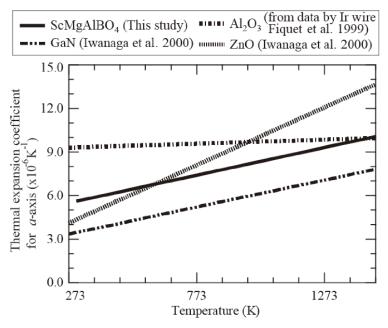


Fig.2 Temperature dependence of the a-axis for ScAlMgO₄ in comparison to those of GaN, ZnO, and Al₂O₃.

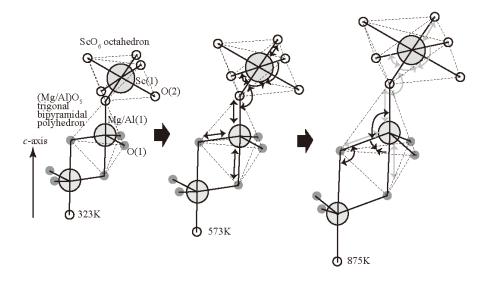


Fig.2 Schematic illustration of the thermal expansion of ScAlMgO₄ structure.

R. Simura et al., (2015)